

FACULTY OF ENGINEERING & TECHNOLOGY

First Year Master of Engineering

Semester I

Course Code: 102320106

Course Title: Mechanical Vibration

Type of Course:Program Elective II

Course Objectives:Understand the concepts of Mechanical vibrations starting from single, two, Multi degree freedom systems and advanced topics like continuous, Non-linear and Random Vibration concepts.

Teaching & Examination Scheme:

Contact hours per week		Course	Course Examination Marks (Maximum / Passing)				ssing)
Tutorial	Dractical	Credits	Inte	rnal	Exte	rnal	Total
Tutorial	Practical		Theory	J/V/P*	Theory	J/V/P*	Total
0	2	4	40/16	20/08	60 / 24	30/12	150/60
	•	t hours per week Tutorial Practical 0 2	Crodite	TutorialPracticalCreditsInteTheory	Tutorial Practical Credits Internal Theory J/V/P*	Tutorial Practical Credits Internal External Theory J/V/P* Theory Theory Theory	Tutorial Practical Credits Internal External Theory J/V/P* Theory J/V/P*

* **J**: Jury; **V**: Viva; **P**: Practical

Detailed Syllabus:

Sr.	Contents	Hours
1	Fundamentals of Vibration: Basic concepts; free vibration of single degree of freedom systems with and without damping,	11
	forced vibration of single DOF-systems, Natural frequency. Two degree and multi degree	
	freedom system, Vibration Absorber, Vibration isolation, Flexibility Matrix and Stiffness matrix,	
	Eigen values and eigen vectors, Orthogonal properties, Modal Matrix-Modal Analysis, Forced Vibration by matrix inversion.	
2	Vibration of Continuous Systems:	6
	Systems governed by wave equations, Vibration of strings, Vibration of rods, Euler Equation for Beams, Effect of Rotary inertia and shear deformation, Vibration of plates.	
3	Transient and Random Vibrations:	7
	Impulse excitation, arbitrary excitation, Laplace transform formulation, Pulse excitation and	
	risetime, Shock response spectrum, Shock isolation. Random phenomena, Time averaging and expected value, Frequency response function, Fourier transforms and response.	
4	Nonlinear Vibrations:	5
	Introduction, Sources of nonlinearity, Qualitative analysis of nonlinear systems. Phase plane,	
	Conservative systems, Stability of equilibrium, Method of isoclines, Self-excited oscillations.	
5	Vibration Measurement:	4
	FFT analyzer, vibration exciters, signal analysis, time domain and frequency domain analysis of	
	signals, experimental modal analysis, machine conditioning and monitoring, fault diagnosis	

Page 1 of 4

6	Vibration Control: Sources of vibration; vibration basics; vibration analysis of continuous structures; finite element analysis of structures; vibration isolation and absorption; passive and active vibration control.	6
7	Click or tap here to enter text.	Click
8	Click or tap here to enter text.	Click
9	Click or tap here to enter text.	Click
10	Click or tap here to enter text.	Click
11	Click or tap here to enter text.	Click
12	Click or tap here to enter text.	Click
13	Click or tap here to enter text.	Click
14	Click or tap here to enter text.	Click
15	Click or tap here to enter text.	Click

Page 2 of 4

Suggested Specification table with Marks (Theory) (Revised Bloom's Taxonomy):

Distribution of Theory Marks			y Mark	S	R : Remembering; U : Understanding; A : Application,	
R	U	Α	Ν	Ε	С	N: Analyze; E: Evaluate; C: Create
10	25	20	25	15	05	

Note: This specification table shall be treated as a general guideline for students and teachers. The actual distribution of marks in the question paper may vary slightly from above table.

Reference Books:

_	
1	Mechanical Vibrations, Rao, S.S, Addison Wesley Longman.
2	Mechanical Vibration Analysis, Shriniwasan P, Tata McGraw Hill.
3	Mechanical vibrations, V. P. Singh, Dhanpat Rai & Co.
4	Theory of Vibrations with Applications, W. T. Thomson, CBS Publishers, Delhi
5	Mechanical Vibrations, S. S. Rao, Addison-Wesley Publishing Co.
6	Fundamentals of Vibration, Leonard Meirovitch, McGraw Hill International Edison.
7	Principles of Vibration Control, Ashok Kumar Mallik, Affiliated East-West Press.
8	Mechanical Vibrations, A H Church, John Wiley & Sons Inc.
9	Mechanical Vibrations, J P Den Hartog, McGraw Hill.
10	Mechanical Vibration Analysis, Srinivasan, McGraw Hill.

Course Outcomes (CO):

Sr.	Course Outcome Statements	%weightage
CO-1	Develop the equation of motion for single degree of freedom by using various methods.	18
CO-2	Analyze the vibration effect of two degree of freedom mechanical systems.	17
CO-3	Evaluate the vibration effect of multi-degrees of freedom system by using various methods.	22
CO-4	Analyze the effect of vibration in continuous system.	18
CO-5	Determine the natural frequency of mechanical system by using vibration instruments.	25
CO-6	Click or tap here to enter text.	Click
CO-7	Click or tap here to enter text.	Click
CO-8	Click or tap here to enter text.	Click
CO-9	Click or tap here to enter text.	Click
CO-10	Click or tap here to enter text.	Click

Page 3 of 4

List of Practicals / Tutorials:

Click or tap here to enter text.

1	Introduction to mechanical vibration
2	Study of Single DOF forced vibration
3	Study of two DOF systems
4	Study of Multi DOF system
5	Solution of SDOF and MDOF problems using MATLAB
6	Study of vibrations of continuous system
7	Study of different vibration measurement instruments
8	Study the machine fault diagnostic system based on vibration analysis
9	Click or tap here to enter text.
10	Click or tap here to enter text.
11	Click or tap here to enter text.
12	Click or tap here to enter text.
13	Click or tap here to enter text.
14	Click or tap here to enter text.
15	Click or tap here to enter text.

Sup	Supplementary learning Material:			
1	NPTEL: https://nptel.ac.in/courses/112/103/112103111/			
2	NPTEL: https://nptel.ac.in/courses/112/107/112107212/			
3	NPTEL: https://nptel.ac.in/courses/112/103/112103112/			
4	Click or tap here to enter text.			
5	Click or tap here to enter text.			

Curriculum Revision:

Version:	1
Drafted on (Month-Year):	Apr-20
Last Reviewed on (Month-Year):	Jul-20
Next Review on (Month-Year):	Apr-22

Page 4 of 4